Tracking
It helps developers use submarine's internal data caching, data exchange, and task tracking capabilities to more efficiently improve the development and execution of machine learning productivity
- Allow data scientist to track distributed ML experiment
- Support store ML parameters and metrics in Submarine-server
- Support hdfs, S3 and mysql (Currently we only support mysql)
Functions
submarine.get_tracking_uri() -> str
Get the tracking URI. If none has been specified, check the environmental variables. If uri is still none, return the default submarine jdbc url.
Returns
- The tracking URI.
submarine.set_tracking_uri(uri: str) -> None
set the tracking URI. You can also set the SUBMARINE_TRACKING_URI environment variable to have Submarine find a URI from there. The URI should be database connection string.
Parameters
- uri - Submarine record data to Mysql server. The database URL is expected in the format
<dialect>+<driver>://<username>:<password>@<host>:<port>/<database>
. By default it'smysql+pymysql://submarine:password@submarine-database:3306/submarine
. More detail : SQLAlchemy docs
submarine.log_param(key: str, value: str) -> None
log a single key-value parameter. The key and value are both strings.
Parameters
- key - Parameter name.
- value - Parameter value.
submarine.log_metric(key: str, value: float, step=0) -> None
log a single key-value metric. The value must always be a number.
Parameters
- key - Metric name.
- value - Metric value.
- step - A single integer step at which to log the specified Metrics, by default it's 0.