Quickstart
This document gives you a quick view on the basic usage of Submarine platform. You can finish each step of ML model lifecycle on the platform without messing up with the troublesome environment problems.
Installation
Prepare a Kubernetes cluster
- Prerequisite
- Check dependency page for the compatible version
- kubectl
- helm (Helm v3 is minimum requirement.)
- minikube.
- Start minikube cluster
minikube start --vm-driver=docker --cpus 8 --memory 4096 --kubernetes-version v1.21.2
Launch submarine in the cluster
- Clone the project
git clone https://github.com/apache/submarine.git
- Install the submarine operator and dependencies by helm chart
cd submarine
helm install submarine ./helm-charts/submarine
- Create a Submarine custom resource and the operator will create the submarine server, database, etc. for us.
kubectl apply -f submarine-cloud-v2/artifacts/examples/example-submarine.yaml
Ensure submarine is ready
- Use kubectl to query the status of pods
kubectl get pods
- Make sure each pod is
Running
NAME READY STATUS RESTARTS AGE
notebook-controller-deployment-5d4f5f874c-mnbc8 1/1 Running 0 61m
pytorch-operator-844c866d54-xm8nl 1/1 Running 2 61m
submarine-database-85bd68dbc5-qggtm 1/1 Running 0 11m
submarine-minio-76465444f6-hdgdp 1/1 Running 0 11m
submarine-mlflow-75f86d8f4d-rj2z7 1/1 Running 0 11m
submarine-operator-5dd79cdf86-gpm2p 1/1 Running 0 61m
submarine-server-68985b767-vjdvx 1/1 Running 0 11m
submarine-tensorboard-5df8499fd4-vnklf 1/1 Running 0 11m
submarine-traefik-7cbcfd4bd9-wbf8b 1/1 Running 0 61m
tf-job-operator-6bb69fd44-zmlmr 1/1 Running 1 61m
Connect to workbench
Exposing service
# Method 1 -- use minikube ip
minikube ip # you'll get the IP address of minikube, ex: 192.168.49.2
# Method 2 -- use port-forwarding
kubectl port-forward --address 0.0.0.0 service/submarine-traefik 32080:80View workbench If you use method 1, go to
http://{minikube ip}:32080
. For example,http://192.168.49.2:32080
. If you use method 2, go tohttp://0.0.0.0:32080
.
Example: Submit a mnist distributed example
We put the code of this example here. train.py
is our training script, and build.sh
is the script to build a docker image.
1. Write a python script for distributed training
Take a simple mnist tensorflow script as an example. We choose MultiWorkerMirroredStrategy
as our distributed strategy.
"""
./dev-support/examples/quickstart/train.py
Reference: https://github.com/kubeflow/tf-operator/blob/master/examples/v1/distribution_strategy/keras-API/multi_worker_strategy-with-keras.py
"""
import tensorflow_datasets as tfds
import tensorflow as tf
from tensorflow.keras import layers, models
import submarine
def make_datasets_unbatched():
BUFFER_SIZE = 10000
# Scaling MNIST data from (0, 255] to (0., 1.]
def scale(image, label):
image = tf.cast(image, tf.float32)
image /= 255
return image, label
datasets, _ = tfds.load(name='mnist', with_info=True, as_supervised=True)
return datasets['train'].map(scale).cache().shuffle(BUFFER_SIZE)
def build_and_compile_cnn_model():
model = models.Sequential()
model.add(
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
def main():
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy(
communication=tf.distribute.experimental.CollectiveCommunication.AUTO)
BATCH_SIZE_PER_REPLICA = 4
BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync
with strategy.scope():
ds_train = make_datasets_unbatched().batch(BATCH_SIZE).repeat()
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = \
tf.data.experimental.AutoShardPolicy.DATA
ds_train = ds_train.with_options(options)
# Model building/compiling need to be within `strategy.scope()`.
multi_worker_model = build_and_compile_cnn_model()
class MyCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
# monitor the loss and accuracy
print(logs)
submarine.log_metrics({"loss": logs["loss"], "accuracy": logs["accuracy"]}, epoch)
multi_worker_model.fit(ds_train, epochs=10, steps_per_epoch=70, callbacks=[MyCallback()])
if __name__ == '__main__':
main()
2. Prepare an environment compatible with the training
Build a docker image equipped with the requirement of the environment.
eval $(minikube docker-env)
./dev-support/examples/quickstart/build.sh
3. Submit the experiment
Open submarine workbench and click
+ New Experiment
Choose
Define your experiment
Fill the form accordingly. Here we set 3 workers.
- Step 1
- Step 2
- Step 3
- The experiment is successfully submitted
4. Monitor the process
- In our code, we use
submarine
fromsubmarine-sdk
to record the metrics. To see the result, click corresponding experiment with namemnist-example
in the workbench. - To see the metrics of each worker, you can select a worker from the left top list.