Docker Images for PyTorch
How to create docker images to run PyTorch on YARN
Dockerfile to run PyTorch on YARN needs two parts:
Base libraries which PyTorch depends on
1) OS base image, for example ubuntu:18.04
2) PyTorch dependent libraries and packages. For example python
, scipy
. For GPU support, you also need cuda
, cudnn
, etc.
3) PyTorch package.
Libraries to access HDFS
1) JDK
2) Hadoop
Here's an example of a base image (with GPU support) to install PyTorch:
FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04
ARG PYTHON_VERSION=3.6
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
cmake \
git \
curl \
vim \
ca-certificates \
libjpeg-dev \
libpng-dev \
wget &&\
rm -rf /var/lib/apt/lists/*
RUN curl -o ~/miniconda.sh -O https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh && \
chmod +x ~/miniconda.sh && \
~/miniconda.sh -b -p /opt/conda && \
rm ~/miniconda.sh && \
/opt/conda/bin/conda install -y python=$PYTHON_VERSION numpy pyyaml scipy ipython mkl mkl-include cython typing && \
/opt/conda/bin/conda install -y -c pytorch magma-cuda100 && \
/opt/conda/bin/conda clean -ya
ENV PATH /opt/conda/bin:$PATH
RUN pip install ninja
# This must be done before pip so that requirements.txt is available
WORKDIR /opt/pytorch
RUN git clone https://github.com/pytorch/pytorch.git
WORKDIR pytorch
RUN git submodule update --init
RUN TORCH_CUDA_ARCH_LIST="3.5 5.2 6.0 6.1 7.0+PTX" TORCH_NVCC_FLAGS="-Xfatbin -compress-all" \
CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \
pip install -v .
WORKDIR /opt/pytorch
RUN git clone https://github.com/pytorch/vision.git && cd vision && pip install -v .
On top of above image, add files, install packages to access HDFS
RUN apt-get update && apt-get install -y openjdk-8-jdk wget
# Install hadoop
ENV HADOOP_VERSION="2.9.2"
RUN wget http://mirrors.hust.edu.cn/apache/hadoop/common/hadoop-${HADOOP_VERSION}/hadoop-${HADOOP_VERSION}.tar.gz
RUN tar zxf hadoop-${HADOOP_VERSION}.tar.gz
RUN ln -s hadoop-${HADOOP_VERSION} hadoop-current
RUN rm hadoop-${HADOOP_VERSION}.tar.gz
Build and push to your own docker registry: Use docker build ...
and docker push ...
to finish this step.
Use examples to build your own PyTorch docker images
We provided some example Dockerfiles for you to build your own PyTorch docker images.
For latest PyTorch
- docker/pytorch/base/ubuntu-18.04/Dockerfile.gpu.pytorch_latest: Latest Pytorch that supports GPU, which is prebuilt to CUDA10.
- docker/pytorch/with-cifar10-models/ubuntu-18.04/Dockerfile.gpu.pytorch_latest: Latest Pytorch that GPU, which is prebuilt to CUDA10, with models.
Build Docker images
Manually build Docker image:
Under docker/pytorch
directory, run build-all.sh
to build all Docker images. This command will build the following Docker images:
pytorch-latest-gpu-base:0.0.1
for base Docker image which includes Hadoop, PyTorch, GPU base libraries.pytorch-latest-gpu:0.0.1
which includes cifar10 model as well
Use prebuilt images
(No liability) You can also use prebuilt images for convenience:
- hadoopsubmarine/pytorch-latest-gpu-base:0.0.1